物 理 Ⅰ
(全問必答)

第1問 次の問い(問1〜6)に答えよ。[解答番号1〜8](配点30)

問1 次の文章中の空欄1・2に入れる数値として正しいものを、下の①〜⑧のうちから一つずつ選べ。① 2

水平な地面からの高さがhの位置から小球を静かに落としたところ、地面で鉛直上方にはね返った。小球は、衝突の際にエネルギーの一部を失ったため元の位置まで戻らず、はね返った後に達した最高点の高さは\(\frac{h}{2}\)であった。衝突直後の小球の運動エネルギーは、衝突直前の運動エネルギーの①倍であり、衝突直後の小球の速さは、衝突直前の速さの②倍である。

① 1 ② \(\frac{1}{\sqrt{2}}\) ③ \(\frac{1}{2}\) ④ \(\frac{1}{2\sqrt{2}}\)
⑤ \(\frac{1}{4}\) ⑥ \(\frac{1}{8}\) ⑦ \(\frac{1}{16}\) ⑧ 0
問2 エネルギー形態の移り変わりに関する次の文章中の空欄3・4に入れる語として最も適当なものを、下の1～6のうちから一つずつ選べ。

ある火力発電所では、重油の燃焼によって水を沸騰させ、生じる水蒸気でタービンをまわして、発電機を運転している。このとき、重油の3は燃焼によって熱に変換され、さらにタービンの4となり、発電機によって電気エネルギーに変換される。

①核エネルギー ②電気エネルギー ③力学的エネルギー ④熱 ⑤光エネルギー ⑥化学エネルギー
問3　私たちの日常生活で使われている電磁波の波長について考える。電気製品のリモコンで使われている赤外線の波長をλ_A、テレビ放送で使われている電波の波長をλ_B、トンネルの照明で使われているナトリウムランプの橙色の光の波長をλ_Cと表す。これらの電磁波の波長の長短を示した関係として正しいものを、次の①〜⑥のうちから一つ選べ。

① $\lambda_A < \lambda_B < \lambda_C$ ② $\lambda_A < \lambda_C < \lambda_B$ ③ $\lambda_B < \lambda_A < \lambda_C$
④ $\lambda_B < \lambda_C < \lambda_A$ ⑤ $\lambda_C < \lambda_A < \lambda_B$ ⑥ $\lambda_C < \lambda_B < \lambda_A$
問 4 図 1 のように、水平な床の上に質量 M の直方体の台があり、その上に質量 m の小物がのっている。台を力 F で水平に引っ張ったところ台は動きだし、小物は台上を滑りだした。このときの台の加速度 a はいくらか。正しいものを、下の①〜⑧のうちから一つ選べ。ただし、台と小物の間に摩擦はなく、台と床の間の動摩擦係数を μ とする。また、重力加速度の大きさを g とする。$a = \boxed{6}$

![Diagram](image)

① \(\frac{F + \mu Mg}{M} \)

② \(\frac{F + \mu Mg}{M + m} \)

③ \(\frac{F - \mu Mg}{M} \)

④ \(\frac{F - \mu Mg}{M + m} \)

⑤ \(\frac{F + \mu (M + m)g}{M} \)

⑥ \(\frac{F + \mu (M + m)g}{M + m} \)

⑦ \(\frac{F - \mu (M + m)g}{M} \)

⑧ \(\frac{F - \mu (M + m)g}{M + m} \)
物理 I

問 5 図 2 は、互いに逆向きに進む二つのパルス波の、ある時刻における波形を表しています。この後、二つのパルス波がそれぞれ矢印の向きに 3 目盛り進んだときの合成波の波形を表す図として正しいものを、下の①〜⑥のうちから一つ選べ。 \[\boxed{7} \]
問 6 深い海の水面を伝わる波の速さ v は、波長 λ と重力加速度の大きさ g を使って、

$$v^2 = \frac{1}{2 \pi} g^p \lambda^q$$

という関係式で与えられる。ここで、π は円周率である。p と q の数値の組合せとして正しいものを、次の①～⑥のうちから一つ選べ。ただし、国際単位系（SI）では速さの単位は m/s、波長の単位は m、重力加速度の単位は m/s2 である。

① $p = 1, \ q = 1$
② $p = 1, \ q = 2$
③ $p = 2, \ q = 1$
④ $p = 1, \ q = 3$
⑤ $p = 2, \ q = 2$
⑥ $p = 3, \ q = 1$
物理Ⅰ

第2問 次の文章(A・Bを読み、下の問い(問1〜5)に答えよ。

[解答番号 1 〜 5](配点 20)

A 黒鉛筆で方眼紙のマスを濃く均一に塗りつぶして電気抵抗を作り、合成抵抗の実験をする。図1のように、12×1マスの太線を2本描き、太線の端を導線に接続し、導線の他端を端子に接続する。端子間の合成抵抗をテスターを使って測定する。ただし、同じ幅の太線の抵抗は長さに比例するものとし、方眼紙は電気を通さないものとする。

図 1
問 1 図 2 のように、12×1 マスの太線を描き加え、太線の端を導線で端子に接続する。この操作を繰り返して行い、1 回ごとに合成抵抗を測定する。太線の数 M に対する合成抵抗の測定値を示した図として最も適当なものを、下の①～⑥のうちから一つ選べ。[1]

図 2

① 合成抵抗
太線の数 M

② 合成抵抗
太線の数 M

③ 合成抵抗
太線の数 M

④ 合成抵抗
太線の数 M

⑤ 合成抵抗
太線の数 M
問2 図3のように、太線を6等分した位置に針金の両端を接続し、針金の数を増やしながら、そのつど合成抵抗を測定する。最初の針金は太線の左端から2マス離れた位置に置き、2マス間隔で順次針金を追加する。針金の数Nに対する合成抵抗の測定値を示した図として最も適当なものを、下の①～⑤のうちから一つ選べ。ただし、針金の抵抗と太さは無視できるものとする。

図3

① ② ③
合成抵抗

針金の数N

0 1 2 3 4 5

④ ⑤
合成抵抗

針金の数N

0 1 2 3 4 5
問 3 図4のように、太線を3等分した二つの位置に抵抗と太さが無視できる針金の両端を接続し、さらに、2本の針金を導線で接続する。12×1マスの太線1本の抵抗を3.0 kΩとすると、合成抵抗の値はいくらか。最も適当な数値を、下の①〜⑨のうちから一つ選べ。 3 kΩ

図 4

<table>
<thead>
<tr>
<th>① 6.0</th>
<th>② 4.0</th>
<th>③ 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>④ 2.0</td>
<td>⑤ 1.0</td>
<td>⑥ 0.50</td>
</tr>
<tr>
<td>⑦ 0.33</td>
<td>⑧ 0.25</td>
<td>⑨ 0.17</td>
</tr>
</tbody>
</table>
物理 I

B 図5のように、銅製のレールを水平な床の上に平行に固定し、三つの電磁石を
レールの間に並べて、レールの上に2本の銅製棒A, Bをレールに直角になる
ように乗せた。電磁石にはN極が上になるように直流電源が接続され、また
レールには電池とスイッチが接続されている。最初、電磁石には一定の電流を流
しており、スイッチは開いた状態である。

図 5

問4次の文中の空欄ア・イに入れる語の組合せとして正しいものを、以下の①〜④のうちから一つ選べ。

スイッチをa側に入れて電池に接続したところ、棒Aはアに、棒
Bはイに動き始めた。 4

①	右	右
②	右	左
③	左	右
④	左	左
問5 次の文章中の空欄 [ウ] ～ [オ] に入れる語句の組合せとして正しいものを、下の①～⑧のうちから一つ選べ。

最初の図5の状態に戻してからスイッチをb側に入れた。次に、電磁石に流れる電流の大きさを急激に増加させると、レールと2本の棒からなる回路には、上から見て電流が [ウ] に流れ、棒Aは [エ] に、棒Bは [オ] に動き始めた。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>時計回り</td>
<td>右</td>
</tr>
<tr>
<td>②</td>
<td>時計回り</td>
<td>右</td>
</tr>
<tr>
<td>③</td>
<td>時計回り</td>
<td>左</td>
</tr>
<tr>
<td>④</td>
<td>時計回り</td>
<td>左</td>
</tr>
<tr>
<td>⑤</td>
<td>反時計回り</td>
<td>右</td>
</tr>
<tr>
<td>⑥</td>
<td>反時計回り</td>
<td>右</td>
</tr>
<tr>
<td>⑦</td>
<td>反時計回り</td>
<td>左</td>
</tr>
<tr>
<td>⑧</td>
<td>反時計回り</td>
<td>左</td>
</tr>
</tbody>
</table>
物理 I

第3問 次の文章(A・B)を読み、下の問い(問1 〜 5)に答えよ。
[解答番号 1 〜 6]（配点 20）

A 空き箱と焦点距離100mmの凸レンズを用いて、図1のようなカメラを作った。スクリーンは半透明の紙で、映った像をカメラの後ろ側から観察することができる。図2の配置で、スクリーン上に物体Aの像がはっきり映るように、レンズとスクリーンとの距離xを調整した。

問1 スクリーン上の像を表す図として最も適当なものを、次の①〜④のうちから一つ選べ。 1

・ ①
・ ②
・ ③
・ ④
問 2 レンズと物体Aとの距離は600 mmであった。レンズとスクリーンの間の距離\(x \)はいくらか。最も適当なものを、次の\(1 \sim 5 \)のうちから一つ選べ。

\[x = 2 \text{ mm} \]

1 60 2 80 3 100 4 120 5 140

問 3 レンズの下半分を黒い紙で覆った。このとき、スクリーン上の像はどのように変化したか。最も適当なものを、次の\(1 \sim 6 \)のうちから一つ選べ。

3

1 像の下半分が見えなくなった。
2 像の上半分が見えなくなった。
3 像全体が暗くなった。
4 像全体が明るくなった。
5 像が小さくなった。
6 像が大きくなった。
物理 I

B Pさんの家と消防署は、図3のように一直線の道路に沿って建っている。救急車がサイレンを鳴らしながら消防署を出発し、一定の速度で走行した後に停車する。サイレンは一定の振動数f_0の音を出すとして、Pさんが家で聞く救急車のサイレンの音の振動数について考える。ただし、消防署とPさんの家で区切られる道路の三つの領域を、それぞれ図3のようにA、B、Cとする。

図 3

問 4 救急車が消防署を出発して、領域Aに停車した。このとき、Pさんの聞く音の振動数は時間とともにどのように変化するか。また領域Cに停車した場合はどうか。それぞれ最も適当なグラフを、次の①～④のうちから一つ選べ。

領域A 4
領域C 5

① 振動数

$f_0 \sim$

O 時間

② 振動数

$f_0 \sim$

O 時間

③ 振動数

$f_0 \sim$

O 時間

④ 振動数

$f_0 \sim$

O 時間

— 18 —

(2109—18)
問 5 救急車は消防署を出発し、一定の速度で時間T_0の間走行した後停車した。このときPさんが聞いたサイレンの音の振動数は図4のように時間変化した。図4において、振動数f_1の音が聞こえていた時間T_iは時間T_0の何倍になるか。最も適当なものを、下の①〜⑤のうちから一つ選べ。

[図4]

① 1 ② $\frac{f_1}{f_1-f_0}$ ③ $\frac{f_1-f_0}{f_1}$ ④ $\frac{f_0}{f_1}$ ⑤ $\frac{f_1}{f_0}$
物理 I

第4問 次の文章(A・B)を読み、下の問い(問1～7)に答えよ。

[解答番号 1 ～ 7] (配点 30)

A 図1のように、床に高さ2hのスタンドを置き、質量が無視できる自然の長さ

hのゴムひもを点Aに取り付ける。ゴムひもの他端に質量mの小球を取り付け

て、点Aから小球を静かに離すると、小球は鉛直に落下し、床に衝突せずに再び

上昇した。ここで、ゴムひものの弾性力は、ゴムひものが自然の長さから伸びた場合

にのみ働き、その大きさは自然の長さからの伸びに比例するものとし、その比例

定数をkとする。ただし、重力加速度の大きさをgとする。

問1 小球が高さhの位置を最初に通過したときの、小球の速さはいくらか。正

しいものを、次の①～⑧のうちから一つ選べ。 1

\[\begin{align*}
① \sqrt{\frac{gh}{2}} & \quad ② \sqrt{gh} & \quad ③ \sqrt{2gh} & \quad ④ 2\sqrt{gh} \\
⑤ \sqrt{\frac{h}{2g}} & \quad ⑥ \sqrt{\frac{h}{g}} & \quad ⑦ \sqrt{\frac{2h}{g}} & \quad ⑧ 2\sqrt{\frac{h}{g}}
\end{align*} \]
問 2 高さが $z(z < h)$ のときの小球の加速度 a はいくらか。正しいものを、次の1〜7のうちから一つ選べ。ただし、加速度 a は鉛直上向きを正とする。$a = 2$

1. $\frac{k}{m} z - g$
2. $\frac{k}{m} (h - z) - g$
3. $\frac{k}{m} (h + z) - g$
4. $- g$
5. $\frac{k}{m} z$
6. $\frac{k}{m} (h - z)$
7. $\frac{k}{m} (h + z)$

問 3 小球が最下点に達したときの高さを z_0 とするとき、比例定数 k を表す数式として正しいものを、次の1〜6のうちから一つ選べ。$k = 3$

1. $mg \frac{z_0}{(h - z_0)^2}$
2. $2 mg \frac{z_0}{(h - z_0)^2}$
3. $mg \frac{2 h - z_0}{(h - z_0)^2}$
4. $2 mg \frac{2 h - z_0}{(h - z_0)^2}$
5. $mg \frac{1}{h - z_0}$
6. $2 mg \frac{1}{h - z_0}$
物理I

B 水平な地面に停めたクレーン車で、荷物をつり上げて移動させることを考える。このクレーン車は、図2のように、質量M_1の車体部と長さLで質量M_2の一様なアーム（腕の部分）からなり、車体部はその中心からlの距離にある前後の車輪で支えられている。アームは車体部の前後方向に平行な鉛直面（図の紙面）内でのみ運動し、アームが鉛直方向となす角度θが変化する。ただし、θの変化以外にクレーン車の変形はなく、ロープは質量が無視でき摩擦なく動くものとする。また、上端からロープでつる荷物の質量をmとし、重力加速度の大きさをgとする。
問4 静止したクレーン車には、図3のように、重力M_1g, M_2g, ロープから受ける張力mg以外に、後輪Rと前輪Fを通じて地面から大きさG_1とG_2の垂直抗力がはらく。これらの力が満たすつり合いの式として正しいものを、下の①〜④のうちから一つ選べ。④

![図3](image)

① $G_1 + G_2 = M_1g + M_2g + mg$
② $G_1 - G_2 = M_1g + M_2g + mg$
③ $G_1 + G_2 = M_1g + M_2g - mg$
④ $G_1 - G_2 = M_1g + M_2g - mg$

問5 荷物の質量mがある値m_cを超えると、後輪Rが浮いて、クレーン車が転倒することがわかった。$m = m_c$では、後輪Rを通じてはたく垂直抗力G_1は0になる。このときの前輪Fのまわりの力のモーメントのつり合いの式として正しいものを、次の①〜④のうちから一つ選べ。④

$M_1gl = M_2g\left(\frac{L}{2}\sin\theta + l\right) + m_cg(L\sin\theta - l)$
② $M_1gl = M_2g\left(\frac{L}{2}\sin\theta - l\right) + m_cg(L\sin\theta + l)$
③ $M_1gl = M_2g\left(\frac{L}{2}\sin\theta - l\right) + m_cg(L\sin\theta - l)$
④ $M_1gl = M_2g\left(\frac{L}{2}\sin\theta + l\right) + m_cg(L\sin\theta + l)$

—23—

(2109—23)
問題 6 次に、ロープを巻き上げて、ある高さで静止していた荷物を鉛直につり上げた。時刻 t における荷物を引き上げる速さ v が図 4 のように変化したとき、ロープの張力 T の変化を表すグラフとして最も適当なものを、下の①〜⑥のうちから一つ選べ。⑥
問 7 アームの角度 θ をゆっくり変えて、質量 500 kg の荷物を鉛直上方に 1 m、水平に 2 m 動かした。このときクレーン車のロープの張力が荷物にした仕事 W はいくらか。最も適当な値を、次の①〜⑥のうちから一つ選べ。ただし、重力加速度の大きさを 9.8 m/s² とする。$W = \boxed{7} \text{ J}$

① 4.9×10^2
② 9.8×10^2
③ 1.5×10^3
④ 4.9×10^3
⑤ 9.8×10^3
⑥ 1.5×10^4
問題と解答は、独立行政法人 大学入試センターホームページより転載しています。
ただし、著作権上の都合により、一部の問題・画像を省略しています。

日本一の学校情報

http://www.js88.com

インターネット塾・予備校情報サイト

http://jyuku.js88.com